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Abstract. We analyze aspects of the behavior of the family of in-
ner parallel bodies of a convex body for the isoperimetric quotient and
deficit of arbitrary quermassintegrals. By means of technical bound-
ary properties of the so-called form body of a convex body and similar
constructions for inner parallel bodies, we point out an erroneous use
of a relation between the latter bodies in two different works. We cor-
rect these results, limiting them to convex bodies having a very precise
boundary structure.

1. Introduction

Inner parallel bodies of convex bodies have been object of recent studies
with different flavors [6, 12, 13, 14, 15, 16, 17]. More classical existing
literature on them (e.g. [1, 3, 4, 9, 10, 21]) along with their role in the
proofs of fundamental results in the theory of convex bodies, make inner
parallel bodies essential objects not only within classical Convex Geometry
(see [22, Section 7.5]), but also in other related fields (see e.g. [7, 11, 20]
and the references in [22, Note 3 for Section 3.1] and [6]).

In [6] and [16] the authors study the behavior of the isoperimetric quotient
for the family of inner parallel bodies, and provide a lower bound for the
perimeter of the inner parallel bodies of a convex body, respectively. How-
ever, both articles make an erroneous use of the relation K ⊂ Kλ + |λ|K f

λ

between the inner parallel bodies Kλ of a convex body, their form bodies K f
λ

and the original convex body K (see (2.4) and Section 2 for the proper defi-
nitions). This relation, which holds, for example, under technical properties
of the boundary of the involved convex bodies (see (2.3)), is, however, not
true without further conditions. To the best of the authors’ knowledge, a
full characterization of the conditions under which the above inclusion holds
is not known.
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project 19901/GERM/15.

1
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The purpose of this paper is twofold. On the one hand, we describe the
error contained in the two mentioned references, providing examples proving
these have to be adjusted with further hypotheses. On the other hand, we
provide alternative proofs to those results under suitable restrictions of the
boundaries of the involved convex bodies, and further, we extend the results
concerning inner parallel bodies in [6] to a more general setting.

The paper is organized as follows. In Section 2 we introduce the notions
and basic results, which are needed throughout the paper. In Section 3
we analyze the problems in the proof of the main result in [6], providing
an example where the used methods do not hold. In Section 4 we obtain
new results concerning the behavior of the isoperimetric quotient and deficit
under assumptions on the boundary of the involved convex bodies. Finally
in Section 5 we point out an error -of the same spirit of the one found in [6]-
in one of the proofs of [16] and discuss it.

2. Background

Let Kn be the set of all convex bodies, i.e., nonempty compact convex
subsets of the Euclidean space Rn, and let Kn

n the subset of convex bodies
having interior points. A convex body K is called regular if all its boundary
points are regular, i.e., the supporting hyperplane to K at any boundary
point is unique. Let Bn be the n-dimensional Euclidean unit ball and Sn−1

the corresponding unit sphere. The volume of a measurable setM ⊂ Rn, i.e.,
its n-dimensional Lebesgue measure, is denoted by vol(M), and the measure
of its boundary, i.e., its surface area (also called perimeter), is represented
by S(M). Furthermore, the closure of M is denoted by clM . For K ∈ Kn

and u ∈ Sn−1, h(K,u) = sup
{
〈x, u〉 : x ∈ K

}
stands for the support function

of K (see e.g. [22, Section 1.7]).
The vectorial or Minkowski addition of two sets K,L ⊂ Rn is given by

K + L = {x+ y : x ∈ K, y ∈ L},

whereas the Minkowski difference of K,L ⊂ Rn is given by

K ∼ L = {x ∈ Rn : x+ L ⊂ K}.

Note that (K ∼ L) + L ⊂ K, and the inequality may be strict.
Let K ∈ Kn and E ∈ Kn

n. The inradius r(K;E) of K relative to E is the
radius of one of the largest dilations of E which fits inside K, i.e.,

r(K;E) = sup{r ≥ 0 : ∃x ∈ Rn with x+ rE ⊂ K}.

For −r(K;E) ≤ λ ≤ 0 the inner parallel body of K at distance |λ| is the
Minkowski difference of K and |λ|E, i.e.,

Kλ := K ∼ |λ|E =
{
x ∈ Rn : x+ |λ|E ⊂ K

}
∈ Kn.

Notice that if E = Bn, then K−r(K;Bn) is the set of incenters of K, which is
usually called the kernel of K, and its dimension is strictly less than n (see
[2, p. 59]). Equivalently (see [22, Section 3.1]), the inner parallel body Kλ
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of K, −r(K;E) ≤ λ ≤ 0, can be defined using the support functions of K
and E as

(2.1) Kλ =
{
x ∈ Rn : 〈x, u〉 ≤ h(K,u)− |λ|h(E, u), u ∈ Sn−1

}
.

A vector u ∈ Sn−1 is a 0-extreme normal vector (or just extreme vector) of
K if it cannot be written as a linear combination of two linearly independent
normal vectors at one and the same boundary point of K. We denote by
U(K) the set of 0-extreme normal vectors of K, which play a key role in the
study of convex bodies. Indeed, the dual of the Krein-Milman theorem (see
e.g. [22, Corollary 1.4.5]) yields

(2.2) K =
{
x ∈ Rn : 〈x, u〉 ≤ h(K,u), u ∈ U(K)

}
,

and thus, the inner parallel bodies of K can be expressed as (cf. (2.1))

Kλ =
{
x ∈ Rn : 〈x, u〉 ≤ h(K,u)− |λ|h(E, u), u ∈ U(K)

}
for −r(K;E) ≤ λ ≤ 0.

The (relative) form body of a convex body K ∈ Kn
n with respect to E ∈ Kn

n,
denoted by K f , is defined as (see e.g. [3])

K f =
{
x ∈ Rn : 〈x, u〉 ≤ h(E, u), u ∈ U(K)

}
.

Note that K f strongly depends on the body E. Nevertheless, for the sake
of simplicity, we omit E in the notation.

The form body of K ∈ Kn
n (with respect to an arbitrary E ∈ Kn

n) is always
a tangential body of E. We recall that a convex body K containing a convex
body E, is called a tangential body of E, if through each boundary point of
K there exists a support hyperplane to K that also supports E. Note that
if K is a tangential body of E, then r(K;E) = 1.

There is also a very close connection between inner parallel bodies and
tangential bodies. The next result explains it.

Theorem 2.1. [22, Lemma 3.1.14] Let K,E ∈ Kn
n and let −r(K;E) < λ <

0. Then Kλ is homothetic to K if and only if K is homothetic to a tangential
body of E.

Remark 2.2. The proof of Theorem 2.1 shows that if K is a tangential
body of E then Kλ = (1 + λ)K for −1 < λ ≤ 0.

In the following, we collect some standard properties of inner parallel bod-
ies, form bodies and extreme vectors, together with other relations through
the Minkowski sum, which will be needed later on. There exist further rela-
tions, in a stronger form, through the so-called Riemann-Minkowski integral,
for which we refer to [5] and [21, Lemma 3.2].

Lemma 2.3. Let K,L ∈ Kn and E ∈ Kn
n. The following properties hold:

(i) U(Kλ) ⊂ U(K) for −r(K;E) < λ ≤ 0 (see [21, Lemma 4.5]).
(ii) If K ∈ Kn

n and E is regular then clU(K) = U
(
K f

)
(see [21, Lem-

ma 2.6] and [12, Lemma 2.1]).
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(iii) U(K) ∪ U(L) ⊂ U(K + L) = U(K + µL) for µ > 0. The inclusion
may be strict (see [21, Lemma 2.4] and [14, Lemma 3.1]).

(iv) Kλ + |λ|E ⊂ K for −r(K;E) ≤ λ ≤ 0 (see [21, (4.1)]).
(v) If K ∈ Kn

n then Kλ + |λ|K f ⊂ K for −r(K;E) ≤ λ ≤ 0 (see [21,
Lemma 4.8]).

Remark 2.4. The equality cases in Lemma 2.3 (iv) and (v) are well known:
(i) Equality holds in (iv) for all −r(K;E) ≤ λ ≤ 0 if and only if

K = K−r(K;E) + r(K;E)E (see [21, p. 81]).
(ii) If E is regular, equality holds in (v) for all −r(K;E) ≤ λ ≤ 0 if

and only if K is a tangential body of K−r(K;E) + r(K;E)E sat-
isfying U(K) = U

(
Kλ + K f

)
for all −r(K;E) ≤ λ ≤ 0 (see [14,

Theorem 2.2]).

Let K,E ∈ Kn
n. From now on we will write K f

λ = (Kλ)f to denote the
form body of the inner parallel body of K at distance |λ|, −r(K;E) < λ ≤ 0.
The following counterpart of the relations contained in Lemma 2.3 (v), can
be found in [21, Corollary to Lemma 4.8] (see also Lemma 2.3 (ii)).

Proposition 2.5. Let K,E ∈ Kn
n, with E regular. Assume that, for some

−r(K;E) < λ < 0, the relation

(2.3) U
(
K f

λ

)
= U

(
Kλ +K f

λ

)
holds. Then,

(2.4) K ⊂ Kλ + |λ|K f
λ.

For n = 2 there is equality in (2.4) for all K ∈ K2
2.

Condition (2.3) deserves further observations. On the one hand, it is simi-
lar to the identity U

(
Kλ+K f

)
= U

(
K f

)
, which is a direct consequence of the

relation U
(
Kλ +K f

)
= U(K) needed in [14, Theorem 2.2] (see Remark 2.4),

together with Lemma 2.3 (ii) and (iii). However, since examples of convex
bodies for which U(Kλ) ( U(K) are easily constructed, both conditions are
different. On the other hand, Lemma 2.3 (iii) yields U

(
K f

λ

)
⊂ U

(
Kλ +K f

λ

)
;

however, the inclusion may be strict (see Section 3).

3. Convex bodies not satisfying the inclusion K ⊂ Kλ + |λ|K f
λ

Let K ∈ Kn be a convex body. In [6] the authors study the isoperimetric
quotient I(K−λ) := vol(K−λ)/S(K−λ)n/(n−1) of the family of inner parallel
bodies K−λ, 0 ≤ λ < r(K;Bn), when E = Bn, and analyze the behavior
of the function I(λ) = I(K−λ): in [6, Theorem 1] they prove that the
isoperimetric quotient function I(λ) is non-increasing in 0 ≤ λ < r(K;Bn)
for all convex bodies. However, as we mentioned in the introduction, the
proof of this result is erroneous.

The main idea of the proof is to bound from below the quotient defining
I(λ). To this end, the numerator vol(K−λ) is bounded using Lemma 2.3
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(iv) and the property (K−λ)−µ = K−λ−µ for 0 ≤ λ, µ ≤ λ + µ < r(K;Bn)
(see [22, (3.17)]). More precisely, and following the notation in [6], for
0 ≤ t ≤ t0 < r(K;Bn),

vol(K−t) ≥ vol
(
K−t0 + |t− t0|Bn

)
.

In order to bound the denominator S(K−t), the authors make use of the
monotonicity of the surface area applied to the content (2.4), namely,

K−t ⊂ K−t0 + |t− t0|K f
−t0

for 0 ≤ t ≤ t0 < r(K;Bn). However, this inclusion is not true without
further conditions (as, for instance, the equality U

(
K f
−t0

)
= U

(
K−t0+K

f
−t0

)
,

see Proposition 2.5). Indeed, in Proposition 3.3 we prove that the content
K ⊂ Kλ + |λ|K f

λ, −r(K;E) < λ ≤ 0, is not valid in its full generality.
For K ∈ Kn

n and µ ≥ 0, we consider the following convex body:

(3.1) K(µ) :=
{
x ∈ Rn : 〈x, u〉 ≤ h(K,u) + µh(E, u), u ∈ U(K)

}
.

This construction appeared already in [16, 17, 21]. Indeed, in [21] the fol-
lowing result was proved.

Proposition 3.1. [21] Let K,E ∈ Kn
n and let µ ≥ 0. Then

(i) K + µE ⊂ K + µK f ⊂ K(µ).
(ii) r

(
K(µ);E

)
= µ+ r(K;E).

(iii) For −r(K;E)− µ ≤ λ ≤ 0 we have

K(µ)λ =
{
K(µ+ λ) for − µ ≤ λ ≤ 0,
Kλ+µ for − r(K;E)− µ ≤ λ ≤ −µ.

We will also need the following additional result.

Lemma 3.2. Let K ∈ Kn and let E ∈ Kn
n be regular. Then, for any µ ≥ 0,

(3.2) U
(
K(µ)

)
= clU(K).

Proof. It is enough to observe that, from the definition of K(µ), it fol-
lows that K(µ) is the form body of K with respect to E′ = K + µE.
Since E is regular, so is K + µE = E′, and hence the identity follows from
Lemma 2.3 (ii). �

We are now in a position to prove the announced non-validity of the
inclusion (2.4) without further assumptions. The next result will be proved
when E = Bn, although it holds true for any regular E ∈ Kn

n.

Proposition 3.3. There exists K ∈ Kn
n such that K ) Kλ + |λ|K f

λ for
some −r(K;Bn) < λ < 0.

Proof. For any K ∈ Kn
n and µ ≥ 0, since K = K(µ)−µ is an inner parallel

body of K(µ) (see Proposition 3.1 (iii)), Proposition 3.1 (i) yields

(3.3) K(µ)−µ + µK(µ)f−µ = K + µK f ⊂ K(µ).
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So, we have to find a convex body K (and µ > 0) such that the above
inclusion is strict.

If we assume, to the contrary, that K(µ)−µ + µK(µ)f−µ = K(µ) for all
K ∈ Kn

n and µ ≥ 0, then we have, in particular, thatK(µ) = K+µK f . Then,
since U

(
K f

)
= clU(K) ⊃ U(K) (Lemma 2.3 (ii)), we can use Lemma 2.3 (iii)

and Lemma 3.2 to get

U
(
K f

)
= U(K) ∪ U

(
K f

)
⊂ U

(
K +K f

)
= U

(
K(µ)

)
= clU(K) = U

(
K f

)
.

Hence

(3.4) U
(
K f

)
= U

(
K +K f

)
.

Now, it will be enough to find a convex body for which the latter equality
does not hold. The following polytope P serves for the purpose (see Figure 1;
note that it coincides with the polytope P (12) used in [17, Proposition 5.1]).
Let

(3.5) P =


x1

x2

x3

 ∈ R3 :
±12x1 + 35x3 ≤ 432,
±12x2 + 5x3 ≤ 60,

x3 ≥ 0

 .

Figure 1. A polytope such that P (µ) ) P (µ)−µ +µP (µ)f−µ

for µ > 0.

On the one hand, since the extreme vectors of P are just the unit outer
normal vectors to its facets, namely,

U(P ) =
{(

±12
37
, 0,

35
37

)ᵀ

,

(
0,±12

13
,

5
13

)ᵀ

, (0, 0,−1)ᵀ
}
,

and since P f =
{
x ∈ Rn : 〈x, u〉 ≤ 1, u ∈ U(P )

}
, we have

P f =


x1

x2

x3

 ∈ R3 :
±12x1 + 35x3 ≤ 37,
±12x2 + 5x3 ≤ 13,

x3 ≥ −1,


and also U

(
P f

)
= U(P ). On the other hand, the polytope P + P f has a

facet with unit outer normal vector (0, 0, 1)ᵀ 6∈ U
(
P f

)
, which arises from

the edge of P determined by the straight line {x2 = 0, x3 = 12}, and the
edge of P f corresponding to the line {x1 = 0, x3 = 37/35}. Therefore
U

(
P f

)
( U

(
P + P f

)
, which contradicts (3.4) and concludes the proof. �
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Remark 3.4. Unfortunately, the previous polytope P does not provide us
with a counterexample for the non-increasing behavior of the isoperimetric
quotient function I(λ). Thus, except for particular families of convex bod-
ies (see Section 4) it is not known yet whether the isoperimetric quotient
function is non-increasing for an arbitrary convex body.

4. Isoperimetric quotients and deficits

Unlike the authors in [6], we shall consider the family of inner parallel bod-
ies defined in the range −r(K;E) ≤ λ ≤ 0, which will reverse the behavior
of the isoperimetric quotient function (in [6] the range is 0 ≤ λ ≤ r(K;Bn)
what makes the behavior of I(λ) non-increasing). Furthermore, since we will
also work with the isoperimetric deficit, we will consider the isoperimetric
quotient in the usual way, namely, S(Kλ)n/vol(Kλ)n−1, in order to compare
the behavior in both cases.

In this section we obtain new results concerning the behavior of the
isoperimetric quotient (and also of the isoperimetric deficit) under assump-
tions on the boundary of the convex bodies involved. The first condition
we can impose is, actually, the boundary condition necessary to validate the
proof of Theorem 1 in [6], namely:

Theorem 4.1 ([6, Theorem 1] revised). Let K ∈ Kn
n. If

U
(
K f

λ

)
= U

(
Kλ +K f

λ

)
for − r(K;Bn) ≤ λ ≤ 0,

then the isoperimetric quotient S(Kλ)n/vol(Kλ)n−1 is non-increasing.

The proof of this result is exactly the proof of [6, Theorem 1], where the
use of (2.4) is justified by assuming (2.3).

Next we prove that under different conditions to (2.3), the isoperimetric
quotient function is also non-decreasing. In fact, we will get a more gen-
eral result for all the quermassintegrals of a convex body K (relative to an
arbitrary E ∈ Kn

n), which we define next.
Given K ∈ Kn and E ∈ Kn

n, the so-called relative Steiner formula states
that the volume of the Minkowski addition K + µE, µ ≥ 0, is a polynomial
of degree n in µ,

vol(K + µE) =
n∑

i=0

(
n

i

)
Wi(K;E)µi.

The coefficients Wi(K;E) are called (relative) quermassintegrals of K, and
they are just a special case of the more general mixed volumes, for which
we refer to [22, s. 5.1]. In particular, we have W0(K;E) = vol(K) and
Wn(K;E) = vol(E). Moreover, if E = Bn, the polynomial in the right hand
side becomes the classical Steiner polynomial, see [23], and nW1(K;Bn) =
S(K) is the usual surface area of K.

Let Wi(λ) := Wi(Kλ;E) for −r(K;E) ≤ λ ≤ 0. From the concavity of
the family of inner parallel bodies (see [22, Lemma 3.1.13]) and the gen-
eral Brunn-Minkowski theorem for relative quermassintegrals (see e.g. [22,
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Theorem 7.4.5]), we obtain
′Wi(λ) ≥ W′

i(λ) ≥ (n− i)Wi+1(λ)

for i = 0, . . . , n − 1 and for −r(K;E) ≤ λ ≤ 0. Here ′Wi and W′
i denote,

respectively, the left and right derivatives of the function Wi(λ), and for
λ = −r(K;E) (respectively, λ = 0) only the right (left) derivative is con-
sidered (W′

i will also denote the full derivative of Wi when the function is
differentiable). In [12] the following definition was introduced.

Definition 4.2. Let E ∈ Kn
n and let 0 ≤ p ≤ n−1. A convex body K ∈ Kn

belongs to the class Rp if, for all 0 ≤ i ≤ p and for −r(K;E) ≤ λ ≤ 0,

(4.1) ′Wi(λ) = W′
i(λ) = (n− i)Wi+1(λ).

Notice that the class Rp depends on the fixed convex body E. Neverthe-
less, for the sake of simplicity, we will also omit E in the notation.

Since the volume is always differentiable with respect to λ and vol′(λ) =
nW1(λ) (see e.g. [1, 18]), the class R0 consists of all convex bodies, i.e.,
R0 = Kn. From the definition we get Rp ⊃ Rp+1, p = 0, . . . , n − 2, and
all these inclusions are strict (particular tangential bodies show it; see [12]).
The problem of determining the convex bodies belonging to the class Rp

was studied by Bol [1] and Hadwiger [9] in the 3-dimensional case when
E = Bn. In [12] and [15] the general classes Rn−1 and Rn−2, respectively,
were characterized. The cases p = 1, . . . , n− 3 remains open.

Finally, we recall the following inequalities for quermassintegrals, which
can be deduced from the well-known Aleksandrov-Fenchel inequalities for
mixed volumes (see e.g. [22, Sections 7.3 and 7.4]). They motivate and are
also needed to prove our results. Let K ∈ Kn and E ∈ Kn

n. Then

(4.2) Wi(K;E)Wj(K;E) ≥ Wk(K;E)Wl(K;E), 0 ≤ l < i ≤ j < k ≤ n,

and

(4.3) Wj(K;E)n−i ≥ Wi(K;E)n−jvol(E)j−i, 0 ≤ i ≤ j ≤ n.

Note that the last inequality, for E = Bn and i = 0, j = 1, yields the
well-known isoperimetric inequality S(K)n ≥ nnvol(Bn)vol(K)n−1.

4.1. Non-decreasing isoperimetric quotients. Inspired by the families
of inequalities (4.3), we consider the isoperimetric quotient (up to the con-
stant vol(E)j−i) Wj(K;E)n−i/Wi(K;E)n−j and study its behavior for the
family of inner parallel bodies.

We start by proving that for convex bodies lying in the suitable class Rp,
the above isoperimetric quotients for inner parallel bodies are non-increasing
in the range −r(K;E) < λ ≤ 0.

Proposition 4.3. Let 0 ≤ i < j < n, and let K ∈ Rj and E ∈ Kn
n. Then

the isoperimetric quotient function Wj(λ)n−i/Wi(λ)n−j is non-increasing
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for −r(K;E) < λ ≤ 0. In particular,

Wj(Kλ;E)n−i

Wi(Kλ;E)n−j
≥ Wj(K;E)n−i

Wi(K;E)n−j
.

Proof. We consider the function

φ(λ) :=
Wj(λ)n−i

Wi(λ)n−j
for − r(K;E) < λ ≤ 0.

Taking derivatives with respect to λ, and since K ∈ Rj ( Ri because
i < j, we can use the relations W′

i(λ) = (n − i)Wi+1(λ) and W′
j(λ) =

(n− j)Wj+1(λ) to get

φ′(λ) =
Wj(λ)n−i−1

Wi(λ)n−j+1

[
(n− i)Wi(λ)W′

j(λ)− (n− j)Wj(λ)W′
i(λ)

]
=

(n− i)(n− j)Wj(λ)n−i−1

Wi(λ)n−j+1

[
Wi(λ)Wj+1(λ)−Wj(λ)Wi+1(λ)

]
.

The Aleksandrov-Fenchel inequalities (4.2) yield φ′(λ) ≤ 0, i.e., φ(λ) is non-
increasing when −r(K;E) < λ ≤ 0. �

Note that if K is a tangential body of E then, since Kλ = (1 + λ)K
(Remark 2.2) and the i-th quermassintegral is homogeneous of degree n− i
in its first argument (see e.g. [8, Theorem 6.13]), the isoperimetric quotient
function

φ(λ) =
Wj(λ)n−i

Wi(λ)n−j
=

Wj

(
(1 + λ)K;E

)n−i

Wi

(
(1 + λ)K;E

)n−j
=

Wj(K;E)n−i

Wi(K;E)n−j

is constant in −1 < λ ≤ 0 for all 0 ≤ i < j < n (without additional
assumptions on the classes Rp).

Remark 4.4. For λ ≥ 0, setting Wi(λ) = Wi(K + λE), 0 ≤ i ≤ n− 1, one
has W′

i(λ) = (n− i)Wi+1(λ) for all i = 0, . . . , n−1 directly from the Steiner
formula for quermassintegrals (see [22, (5.29) and p. 225]); here, for λ = 0
only the right derivative is considered. This yields that the isoperimetric
quotient function φ defined for λ ≥ 0 satisfies φ′(λ) ≤ 0 too, and thus, φ
is non-increasing in the full range

(
−r(K;E),∞

)
. We observe that, when

λ ≥ 0, no examples of constant φ, apart from K = E, are known to the
authors.

The case i = 0, j = 1 (and E = Bn) in Proposition 4.3 provides us
with an alternative result on the monotonicity of the classical isoperimetric
quotient with respect to the family of inner parallel bodies, now under a
different assumption on K (cf. Theorem 4.1):

Corollary 4.5. Let K ∈ Kn
n. If K ∈ R1 then the isoperimetric quotient

S(Kλ)n/vol(Kλ)n−1 is a non-increasing function for −r(K;Bn) < λ ≤ 0.
In particular,

S(Kλ)n

vol(Kλ)n−1
≥ S(K)n

vol(K)n−1
.
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4.2. Isoperimetric deficit. Next we consider the isoperimetric deficit, in-
stead of the quotient, of the inequality (4.3). As we will see, the behavior is
the opposite.

Proposition 4.6. Let 0 ≤ i < j < n, and let K ∈ Ri and E ∈ Kn
n.

Then the isoperimetric deficit function Wj(λ)n−i − Wi(λ)n−jvol(E)j−i is
non-decreasing for −r(K;E) < λ ≤ 0. In particular,

Wj(Kλ;E)n−i −Wi(Kλ;E)n−jvol(E)j−i

≤ Wj(K;E)n−i −Wi(K;E)n−jvol(E)j−i.

Proof. We consider the function

ψ(λ) = Wj(λ)n−i −Wi(λ)n−jvol(E)j−i for − r(K;E) < λ ≤ 0.

Since K ∈ Ri, we know that Wi(λ) is differentiable and W′
i(λ) = (n −

i)Wi+1(λ); however, for W′
j(λ) we can only take one-side derivatives, which

satisfy ′Wj(λ) ≥ W′
j(λ) ≥ (n−j)Wj+1(λ). Thus, taking the right derivative

of ψ(λ) with respect to λ and using the above relations, we obtain that

ψ′(λ) = (n− i)Wj(λ)n−i−1W′
j(λ)− (n− j)Wi(λ)n−j−1W′

i(λ)vol(E)j−i

≥ (n−j)(n−i)
[
Wj(λ)n−i−1Wj+1(λ)−Wi(λ)n−j−1Wi+1(λ)vol(E)j−i].

Next we prove that

(4.4) Wj(λ)n−i−1Wj+1(λ) ≥ Wi(λ)n−j−1Wi+1(λ)vol(E)j−i.

Since i < j, we can use the relation Wj(λ)n−i−1 ≥ Wi+1(λ)n−jvol(E)j−i−1

(cf. (4.3)), and thus, in order to prove (4.4) it suffices to show that

(4.5) Wi+1(λ)n−j−1Wj+1(λ) ≥ Wi(λ)n−j−1vol(E).

If j = n− 1, (4.5) holds trivially; so, we assume that j ≤ n− 2.
The family of inequalities given in (4.3) has a more general version,

namely, Wk−l
s (K;E) ≥ Wk−s

l (K;E)Ws−l
k (K;E) for 0 ≤ l ≤ s ≤ k ≤ n

(see e.g. [22, (7.63)]). Then, since i < i+ 1 ≤ n− j + i− 1, we can write

Wi+1(λ)n−j−1 ≥ Wi(λ)n−j−2Wn−j+i−1(λ),

and hence, using also the Aleksandrov-Fenchel inequalities (4.2) we get

Wi+1(λ)n−j−1Wj+1(λ) ≥ Wi(λ)n−j−2Wn−j+i−1(λ)Wj+1(λ)

≥ Wi(λ)n−j−2Wi(λ)vol(E) = Wi(λ)n−j−1vol(E).

This proves (4.5) and hence (4.4) holds.
So, we have that the right derivative ψ′(λ) ≥ 0 for each λ ∈

(
−r(K;E), 0

)
.

Since ψ is a continuous function in the interval
[
−r(K;E), 0

]
, [19, Theo-

rem 1] yields that ψ(λ) is non-decreasing when −r(K;E) < λ ≤ 0, which
conclude the proof. �
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We point out that in Proposition 4.3 we need that the convex bodies lie
in the class Rj whereas for Proposition 4.6 the assumption is weaker: the
convex body has to lie in Ri, and Rj ( Ri because i < j. Therefore, in the
case of the classical isoperimetric deficit, i.e., i = 0, j = 1, since R0 = Kn,
no hypothesis is needed:

Corollary 4.7. For every K ∈ Kn, the isoperimetric deficit S(Kλ)n −
nnvol(Bn)vol(Kλ)n−1 is a non-decreasing function for −r(K;Bn) < λ ≤ 0.
In particular,

S(Kλ)n − nnvol(Bn)vol(Kλ)n−1 ≤ S(K)n − nnvol(Bn)vol(K)n−1.

Again if we define the isoperimetric deficit function for positive values of
λ, namely, ψ(λ) = Wj(K+λE;E)n−i−Wi(K+λE;E)n−jvol(E)j−i, λ ≥ 0,
we also get the same monotonicity, and thus ψ(λ) is non-decreasing in the
full range

(
−r(K;E),∞

)
.

5. On the perimeter of inner parallel bodies

In [16, Theorem 1.2] the author provides a lower bound for the surface
area of the inner parallel bodies of a convex body K (with respect to Bn);
following our notation, it is shown that

(5.1) S(Kλ) ≥
(

1 +
λ

r(K;Bn)

)n−1

S(K).

For the proof of the above inequality, the author uses an auxiliary result ([16,
Lemma 2.1]) which states that, for K ∈ Kn

n and −r(K;Bn) ≤ λ ≤ 0, among
all convex bodies L ∈ Kn satisfying that Lλ = Kλ, the set L = Kλ + |λ|K f

has maximal surface area.
The proof of this lemma makes the implicit assumption of a condition

closely related to (2.3), namely,

(5.2) U
(
K +K f

)
= U(K),

which is necessary to have the following equality in the last step in the proof:⋂
u∈U(K)

{
x ∈ Rn : 〈x, u〉 ≤ h

(
K + |λ|K f , u

)}
= K + |λ|K f

(cf. (2.2)). Unfortunately, condition (5.2) is not satisfied for all convex bod-
ies K ∈ Kn

n: indeed, although U(K) ⊂ U
(
K+K f

)
always holds (Lemma 2.3

(iii)), the reverse inclusion needs not be true in general, as the polytope P
given in (3.5) shows; note that U(P ) = U

(
P f

)
( U

(
P + P f

)
.

The proof of Lemma 2.1 in [16] actually yields that for K ∈ Kn
n and

−r(K;Bn) ≤ λ ≤ 0, among all convex bodies L ∈ Kn satisfying that Lλ =
Kλ, exactly the set L = Kλ

(
|λ|

)
(cf. (3.1)) has maximal surface area. For

the sake of completeness we state it as a result.



12 M. A. HERNÁNDEZ CIFRE AND E. SAORÍN GÓMEZ

Lemma 5.1 ([16, Lemma 2.1] revised). Let K ∈ Kn
n and −r(K;Bn) ≤ λ ≤

0. Among all convex bodies L ∈ Kn satisfying that Lλ = Kλ, exactly the set

Kλ

(
|λ|

)
=

{
x ∈ Rn : 〈x, u〉 ≤ h(Kλ, u) + |λ|h(E, u), u ∈ U(Kλ)

}
has maximal surface area.

We conclude this note pointing out that, although the proof of Theo-
rem 1.2 in [16] is partially based on an incorrect lemma, the result itself is
valid: the proof of (5.1) follows from [21, Lemma 2.9], which states that

Kλ ⊃
(

1 +
λ

r(K;Bn)

)
K,

and the monotonicity and (n− 1)-homogeneity of the surface area.
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